Contour Maps and Contour Lines
Introduction. To understand how the atmosphere behaves and to make weather forecasts,
meteorologists have to measure, analyze and display patterns of
temperature, pressure, humidity, wind speed, wind direction, etc.
Typically, networks of surface weather-stations and stations for
launching radiosondes (balloon-borne instrument packages),
supplemented by ships, buoys, aircraft, satellites, weather-radars,
and other specialized instruments, record these data simultaneously, mostly
on a regular schedule. The data are then sent to the National
Centers for Environmental Prediction (NCEP) near Washington, D.C.,
for analysis.
One way to display the data—say, temperatures recorded by weather stations at the earth's surface—might be simply to plot the temperatures on a map.
The accompanying Figure 1
shows an example.
However, it's not easy to look at such a map
and see the spatial patterns of temperature—it just looks like a bunch
of headache-producing numbers scattered around. We'd prefer to display
the temperature pattern in some way that's easier to interpret. One
common method of doing that is called contouring. A map produced
using the method of contouring is called a contour map. For
example,
Figure 2
is a contour map for the temperature observations shown in
Figure 1.
(A common, nonmeteorological
example of a contour map is a topographic map, which shows patterns of
the elevation of the Earth's surface above sea level.)
Contour Maps. A contour map typically shows a bunch of lines, often wavy or
forming concentric, irregular closed loops or other patterns.
Each of these lines, called a contour or contour line,
is simply a line along which some quantity (temperature, for example)
is everywhere the same. Contour lines bear more specific names
depending on what quantity the contour map shows:
Meteorological
Quantity:
|
pressure |
temperature |
wind speed |
dew-point
temperature |
etc. |
Name of
Contour Line: |
isobar |
isotherm |
isotach |
isodrosotherm |
(The prefix "iso" is Greek, meaning "equal"
or "same". In the case of the term "isobar", "bar" means
"pressure"—hence, isobar means "same pressure".
Restated, a contour line connects places that all have the
same value of temperature, pressure, or whatever quantity is being
contoured. An isotherm connects places that all have the same
temperature; an isobar connects places that all have the same pressure;
etc.
Each contour line has a value associated with it and is usually
labeled with that value. For example, an isotherm connecting all
places where the temperature is 0°C would have an
appropriate label (typically just "0") somewhere on it.
Contour maps show contour lines with values at regular intervals,
including some standard reference value. The contour interval is
arbitrary but should be chosen so that the contour map shows enough
contours to reveal the pattern clearly without being crowded with too
many contour lines. Usually the contour values are nice, round numbers,
including a standard reference value such as 0, 100, or 1000. For
example, on a temperature map, isotherms might be drawn at 5 degree
intervals, based on a standard reference value such as 0°F. That
is, the map might show the 0°F isotherm and other isotherms at
intervals of 5°F above and below 0°F (that is, ...., -15, -10,
-5, 0, 5, 10, 15, 20, ....). Sea-level pressure maps almost always show
the 1000 millibar isobar (if present) and others (if present) at
intervals of 4 mb above and below 1000 mb.
To draw attention to places where values are higher or lower than
most or all places in the immediate vicinity, an "H" or "L" is often
drawn at such local maxima or minima.
A contour map should always include a title or caption that
identifies the quantity shown and the contour interval used.
A common enhancement of contour maps is to fill in the zone between
each adjacent pair of contour lines with a different color, so that a
particular color corresponds to the range of values lying between the
two contour values. This enhancement is called "color filling".
Figure 3
is an example of a color-filled contour map, for the same data as in
Figures
1
and
2.
Drawing Contours
When drawing a contour line, you can't expect it to pass directly
through many radiosonde or surface-weather stations, because it's
rare for an actual observation to match your contour value exactly.
However, every place has a temperature, pressure, or whatever,
whether or not a station happens to be there to measure it. Most
likely, the places with values matching your contour value mostly
lie somewhere between stations. Hence, when drawing contours,
you usually have to interpolate values between observations.
In practice, this means that you have to look for pairs of stations
adjacent to each other and near your contour, with one station
reporting a value higher and the other station a value lower than
your contour value. Your contour line must then pass somewhere
between two such stations.
Refer to "Contour Analysis" for some online practice and instruction to complement this document.
Here's a general procedure for drawing contours:
- Decide what contour values you will draw. That is, choose
a standard reference value and a contour interval, which together
define the set of possible contours that you might draw. For reference,
write down a sequence of them. (For example, contours of temperature at
3 km above sea level in degrees Celsius, drawn at 5° intervals
with a standard reference value of 0°: -20, -15, -10, -5, 0, 5,
10, 15, etc.)
- On the map, find the highest and lowest values overall from
among those values plotted. These define the range of values that
your contours will cover. The contour with the highest value that
you can draw will not exceed the highest value plotted on the
map, and the contour with the lowest value will not be less than
the minimum plotted value.
- To start, draw either the contour with the highest value
possible (that is, drawn from your list of possibilities in step 1
above but not exceeding the highest value plotted on the map) or the
lowest possible value. (For example, if the highest temperature plotted
on a map of temperature at 3 km above sea level is 8.7°C,
the highest possible contour value that you could draw would be 5°,
so you might start with that one. If the lowest plotted value were
-14.3°C, the lowest possible contour value that you could draw
would be -10°.)
Following the tactic described in the first paragraph under
"Drawing Contours" above, find a spot on the map where you
think there's a value corresponding to your contour value, and precede
from one pair of observations to another (and occasionally passing
directly through a observation, if you're lucky) until (a) you reach
the edge of the plotted values on the map (in which case you simply end
the contour), or (b) you reconnect to the other end of the same
contour, forming a closed loop. (Don't worry—you'll almost never have
much choice in the matter! The data always tell you where your contour
has to go.) Your contours should be drawn as smoothly as possible.
Label your contour on each end and (if it's
relatively long) somewhere in the middle.
[Note that different contours should never cross each other.
Since, by definition, a contour line is a line along which the
value of a quantity is everywhere the same, it follows that, at any
point where two different contours crossed, the quantity would have to
have two different values (such as temperature or pressure) at once.
That is impossible. Similarly, no single contour line should ever split or fork.]
- Repeat step 3. above for the next contour value down (or
up) on your list in step 1. this time, you might be able to
interpolate between observations and previously drawn contours
(which, after all, represent places where you believe you know
the values, even if they aren't actual observations!) Continue
until you've drawn all possible contours. (Note that in some situations,
you might have to draw more than one contour of a particular value.)
- Put an "H" or "L" at places where values are
higher or lower than anywhere else or almost anywhere else nearby—that
is, at local maxima and minima. These locations are typically surrounded by a contour line that forms a closed loop.
Interpreting Contour Maps
Here are some tips for interpreting contour maps:
- Immediately to one side of a contour line, values are always
higher than they are on on the contour itself; immediately to the other
side, values are always lower. Hence, contour lines divide the map
into a region where values are higher than they are on the contour
line itself and a region where they are lower.
- Along a contour line, values don't vary at all (by definition of
a contour line). However, across a contour line values do vary,
and values vary most rapidly in a direction perpendicular to a contour
line. The amount by which values vary across each unit of distance
in a direction perpendicular to contour lines is called the
gradient.
On a temperature map, the temperature gradient
would be the amount by which the temperature varies across each unit of
horizontal distance. It could be expressed in terms of the temperature
difference in °C or °F across a unit of distance such as 100
kilometers or 100 miles, for example. The pressure gradient is
the amount by which pressure varies across each unit of horizontal
distance, and might be expressed in terms of millibars per 100
kilometers, for example.
The gradient is a measure of how rapidly a quantity varies with spatial
position (that is, from place to place).
- The gradient is larger where contour lines are packed closer
together. This is because across each unit of distance, there would
be more contour lines crossed and therefore a greater difference in
values across that distance.
Home |*| ANNOUNCEMENTS |*| Syllabus
Assignments, Labs, Quizzes, Handouts, etc. |*| Forecasting |*| Links