Atmospheric Absorption Spectra
(How well gases in the atmosphere absorb different wavelengths of radiation)
Notes: Components of the Atmosphere
Not Shown in the Figure

• Gases
 o N_2 (nitrogen): 78% of dry air
 • Absorbs no radiation (of any wavelength)
 o Ar (argon): 1% of dry air
 • Absorbs no radiation (of any wavelength)

• Clouds
 o Made of tiny droplets of liquid water or ice crystals
 o Absorb all wavelengths of longwave infrared radiation well
 o Reflect most solar radiation well
Notes on Absorption Spectra

• Absorption by ozone (O_3) and oxygen (O_2)
 o Ozone:
 • absorbs a little LWIR radiation
 • absorbs most of the UV radiation from the sun
 o Oxygen:
 • absorbs a little UV (but nothing else)
Notes on Absorption Spectra
(cont’d)

• Atmospheric window:
 o Wavelengths of longwave infrared radiation that no gases absorb well
 • Without clouds, these wavelengths emitted by the earth’s surface escape to space, while most other wavelengths are absorbed
 • However, clouds do absorb these wavelengths (and all other LWIR radiation emitted by the earth’s surface)
Clearance: Scattering

• Scattering redirects radiation
 o Air scatters mostly just UV and visible light (especially blue light) from the sun
 o Some scattered radiation is redirected back to space (contributes to total solar radiation reflected away by the earth)
 o The rest reaches the earth’s surface (but not from the same direction as direct rays from the sun)
 • As a result, the sky looks blue (scattered blue light comes from all directions that we look)
 • and the sun (direct rays) looks yellow (scattering redirects blue out of the direct rays from the sun, and the result looks yellow)